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Abstract 
 

Background: Natural deep eutectic solvents (NaDES) represent a significant advancement in 
the field of natural material extraction, offering a novel approach to the isolation of active 
compounds. The objective of this study was to develop a novel NaDES-based extraction method 
to achieve the highest percentage of luteolin compounds in celery (Apium graveolens) through 
ultrasonic treatment. 
Method: Choline chloride was employed as the hydrogen bonding acceptor (HBA), while lactic 
acid and malic acid served as the hydrogen bonding donors (HBD). Treatment optimization was 
conducted using Design Expert 7 software, with the variables comprising the HBA:HBD ratio, 
temperature, and time.  
Results: The optimal combination of NaDES solvents was identified as choline chloride: lactic 
acid and choline chloride: malic acid at a ratio of (4.71 mol: 4.76 mol) and (1.27 mol: 1.71 mol), 
respectively, at a temperature of 55.2°C. The optimal conditions were 40°C and 35.45°C, with a 
time of 15.63 minutes and 12.73 minutes, respectively, which yielded 2.2789% and 0.0102% with 
a desirability of 0.2788 and 0.0408, respectively. 
Conclusion: The optimal combination was identified as choline chloride: lactic acid, which 
demonstrated a gain of over 2%. Additionally, the combination of choline chloride: malic acid 
proved effective for luteolin extraction. 
 
Keywords: Choline Chloride; Green extraction; Lactic acid; Malic acid; NaDES (Natural deep 
eutectic solvents); Ultrasound-assisted extraction 
 

INTRODUCTION 
The food, cosmetic, and 

pharmaceutical industries continue to utilize 
organic solvents, also referred to as 
conventional solvents, in their extraction 
processes. These solvents include methanol, 
acetone, benzene, chloroform, petroleum 
ether, and hexane (1,2). The majority of 
conventional solvents are flammable, 
explosive, poorly biodegradable, and possess 
high toxicity (3). At present, the extraction 
process of natural materials has been 
conducted up to the fractionation stage, with 
further studies underway to assess the 
suitability of the resulting pharmaceutical 
dosage forms and to evaluate their toxicity (4–
8). The use of natural deep eutectic solvents 
(NaDES) as an alternative to conventional 
solvents is a promising avenue of research, 

particularly in light of the ongoing 
development of extraction technology.  

The potential of NaDES extraction 
technology lies in its capacity to yield more 
targeted compound extraction results. The 
use of eutectic solvents, which are 
environmentally friendly, non-flammable, non-
volatile, effective, efficient, inexpensive, and 
non-toxic, further enhances this technology 
(9,10). NADES is the development of an 
analogous ionic liquid solvent (ILs) better 
known as DES (Deep Eutectic Solvent). (11). 
The process entails the mixing of hydrogen 
bond acceptors (HBA) and hydrogen bond 
donors (HBD) in a specific molar ratio until the 
formation of hydrogen bonds is achieved (12–
14). The resulting solution is then mixed with 
water at a specific ratio (volumetric to 
volumetric). NADES is formed from natural 
eutectic compounds derived from plant 
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metabolites. Choline chloride (ChCl), citric 
acid, malic acid, maleic acid, acetic acid, 
glucose, fructose, sucrose, trehalose, 
terpenoids, or water have been used as 
NADES (15–17). NADES are biodegradable 
and have minimal toxicity because they are 
easier to break down in the environment. (18). 
NADES can function as a natural solvent, as 
evidenced by their efficacy in natural 
matrices. (19,20). 

The utilization of UV-Vis instruments 
in the analysis and identification of 
compounds, as well as the detection of yields, 
is a crucial aspect of modern chemical 
research (21,22) The luteolin compound was 
extracted using a NaDES-based method. 
Previous studies have demonstrated the 
efficacy of the ultrasound-assisted extraction 
(UAE) method with natural deep eutectic 
solvents (NADES). This method has been 
shown to increase cell permeability, thereby 
reducing the time required for extraction and 
increasing the yield of the process. (23). 
NADES has been demonstrated to be an 
effective solvent for ultrasonic-assisted 
extraction (UAE) of flavonoids and phenolics. 
Its efficacy in this regard is even superior to 
that of methanol, a commonly used solvent for 
the extraction of these compounds (24–26). 
NADES exhibit a number of beneficial 
properties, including sustainability, 
biodegradability, compositional flexibility, and 
the ability to extract bioactive compounds. 
These characteristics make NADES an 
attractive option for use as an environmentally 
friendly green solvent in the development of 
extraction methods. 

Celery (Apium graveolens) is a 
vegetable that is consumed with regularity, 
imparting a robust and distinctive flavor to a 
variety of dishes while conferring a number of 
health benefits (27). A compound, luteolin, 
has been identified in celery. (28–30). Luteolin 
is a flavonoid secondary metabolite that 
exhibits antimicrobial bioactivity (31), anti-
inflammatory (32), anti-cancer (30,33–35), 
antioxidant (29) anti-viral (35) anti-diabetic 
and anti-obesity (28).  

The NADES with the hydrogen bonding 
acceptor (HBA) choline chloride was selected 
as the most promising option (36). Lactic acid 

and malic acid were selected as hydrogen 
bonding donors (HBDs) due to their 
demonstrated ability to extract compounds 
with flavonoid secondary metabolites 
(23,25,37). The advancement of extraction 
technology from the conceptualization of this 
methodology is to achieve enhanced yields in 
celery extraction outcomes with the objective 
of isolating the target active compound 
luteolin.  

 
METHOD 
Tools and Materials 

UV-Vis spectrophotometer (Shimadzu® 
UV-1800), Kuvet, ultrasonic (BAKU® BK-
1200), hotplate steerer (IKA® C-MAG HS7), 
Erlenmeyer (IWAKI® Pyrex), glass bottles, 
beakers (IWAKI® Pyrex), centrifuge (Hettich® 
EBA 20), Whatman filter paper No.1, stirring 
rods (5 cm), Celery (Apium graveolens), 
luteolin, choline chloride, lactic acid, malic 
acid, DMSO, aqua demineralized. 
Procedure 

The sampling was conducted in Jambi 
City, Jambi Province. The celery (Apium 
graveolens) leaf samples were used in this 
study. The determination was carried out at 
the biology laboratory of Gadjah Mada 
University (UGM). 
NaDES (Natural Deep Eutectic Solvent) 
Preparation 

The sampling was conducted in Jambi 
City, Jambi Province. The celery (Apium 
graveolens) leaf samples were used in this 
study. The determination was carried out at 
the biology laboratory of Gadjah Mada 
University (UGM) (23,37–39). The NaDES 
component was weighed in accordance with 
the predetermined ratio and demineralized 
water was added. The mixture was then 
homogenized using a hotplate steamer at 
80°C for up to one hour. The rotation speed 
was set at "no. 3" until a clear NaDES solvent 
was obtained (17,36,40,41).  
NaDES extraction method (Natural Deep 
Eutectic Solvent) Ultrasound-assisted 
extraction (UAE) 

The research design was created using 
Design Expert 7 software. A total of 48 
conditions (triplo) were conducted, each of 
which constituted a comparative design with a 
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combination of HBA and HBD at a molar ratio 
of 1:5. These combinations included choline 
chloride and malic acid, as well as choline 
chloride and lactic acid. The NaDES solvents 
were prepared in accordance with the 
specified ratio, with the addition of 100% of 
the specified molarity to the mixture of solvent 
components.  Additionally, the temperature 
ranged from 25 to 75 degrees Celsius, and 
the time span was between 3 and 30 minutes 
(23,37). Subsequently, the solution is 
separated via centrifugation for a period of 10 
minutes at a speed of 5000 rpm. Following 
this, the sample is prepared for the calculation 
of luteolin, which has been successfully 
extracted. The extract solution is stored at 
room temperature  (15,39,42,43). 
 
Detection using UV-VIs 
spectrophotometers 

The maximum wavelength of the luteolin 
comparator was identified (λmax = 350 nm). 
(44–46). DMSO was used as the 
solvent/blank for luteolin (47). Furthermore, a 
calibration curve was created using five 
variations of concentration with the standard 
compound luteolin. The identification of 
compounds successfully extracted for each 
treatment, designed based on NADES, was 
also completed. The initial identification 
process was carried out using a UV-Vis 
spectrophotometer. 
 
Analysis of luteolin compound with HPLC-
MS/MS instruments 

Phytochemical analysis were carried out 
utilizing HPLC-MS/MS instruments utilizing. 
NaDES Extract result were arranged by the 
SPE (Solid Phase Extraction) strategy. The 
examination with HPLC-MS/MS was carried 
out with system column sort utilized was 
ACQUITY UPLC® HSS C18 (1.8 μm 2.1×100 
mm, waters, USA) at temperatures of 50ºC 
(column) and 25ºC (room). HPLC-MS/MS 
examination was utilized eluent A that 
comprise of water and ammonium formate 
(99.9: 0.1), and eluent B that comprise of 
acetonitrile and formic acid (99.9:0.1) with a 
stream rate of 0.2 mL/min (gradient) for 23 
min. (6,48–51). The results of HPLC-MS/MS 
were then analyzed using masslynx, 

msconvert and sirius software (6,52,61,53–
60). 

 
Data Analysis 

Design Expert 7 software was used to 
design a comparison and determine the 
best % optimization for the extraction of 
luteolin compounds from celery (Apium 
graveolens) samples. The research variables 
were selected based on their impact on the 
process: Hydrogen Bonding Acceptor 
(choline chloride), Hydrogen Bonding Donor 
(lactic acid, malic acid), time, and 
temperature. 
 
RESULTS 
Calibration curve of luteolin compound 

A linear regression equation Y = 

0.0572x+0.1054 was obtained for the luteolin 

compound with an R value of 9973. The blank 

in this section was prepared using DMSO 

(47). This will be the definitive reference for 

calculating the levels of compounds obtained, 

along with the percentage of compounds 

obtained from the treatment that has been 

carried out. A wavelength of 350 nm was used 

for luteolin detection with a concentration 

series of 4 ppm, 6 ppm, 8 ppm, 10 ppm, and 

12 ppm. (44–46)  

 
Figure 1. Celery (apium graveolens) 
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Figure 2. The calibration curve of the luteolin compound 

 
NaDES Solvent 

We then prepared the NaDES solvent 
and extracted the compounds using the 
ultrasonic method. We detected the filtrate 
with a UV-Vis spectrophotometer instrument 
and calculated the percentage of luteolin 
compounds that were successfully detected 
at a wavelength of 350 nm (44–46). DMSO 
was used as a blank for the detection of 
luteolin compounds. We used an acid-based 
NaDES solvent with a combination of choline 
chloride and lactic acid, as well as choline 
chloride and malic acid. The combination of 
choline chloride and lactic acid in the NaDES 
solvent produced promising results. The 
highest yield was achieved with a ratio of 
choline chloride to lactic acid that was almost 
exact. These findings were further validated 
by temperature and time effects. These 
results pave the way for the development of 
faster extraction methods. 

We prepared the NaDES solvent by 
mixing the HBA, HBD, and distilled water 
components. We obtained a clear, 
transparent NaDES solvent within the first 
hour. Our observations ranged from 30 
minutes to 45 minutes. We used a ratio of 0.1 
in the number of moles of HBA and HBD 
components.. 

 
Figure 3. Luteolin 

Table 1. Choline chloride : lactic acid 

Run 
HBA/ 
ChCl 

HBD/ 
Lactic 
acid 

Temp
eratur
e 

Tim
e 

% yield 

1 5 5 25 30 0.3155 

2 1 1 75 30 2.2492 

3 1 1 75 30 2.2492 

4 1 5 25 30 0.3640 

5 5 5 25 3 0.1412 

6 5 1 25 3 0.3640 

7 1 5 25 3 0.3211 

8 5 5 75 3 0.3145 

9 1 1 25 3 1.4762 

10 5 5 25 3 0.1412 

11 1 1 75 30 2.2492 

12 5 1 25 30 0.2118 

13 5 5 75 30 0.2952 

14 5 5 25 3 0.1412 

15 1 5 75 30 0.5903 

16 1 5 25 30 0.3648 

17 5 1 75 30 0.5903 

18 1 5 25 3 0.3203 

19 1 1 75 3 1.8887 

20 5 5 75 3 0.3145 

21 5 1 25 30 0.5396 

22 5 5 75 3 0.3155 

23 5 1 25 3 0.2891 

24 1 5 75 3 0.4288 

25 5 1 75 3 0.2875 

26 5 1 75 30 0.4288 

27 5 1 25 30 0.4951 

28 5 5 25 30 0.3160 

29 5 5 25 30 0.3160 

30 1 5 25 3 0.3203 

31 5 1 75 3 0.4741 

32 1 1 75 3 1.8887 

33 1 5 75 30 0.5903 

34 5 1 25 3 0.5396 

35 5 5 75 30 0.2973 

36 1 5 75 3 0.4296 

37 1 1 25 30 1.4816 

38 5 5 75 30 0.2968 

39 1 1 75 3 1.8887 

40 5 1 75 30 0.4452 

41 1 1 25 3 1.4762 

42 5 1 75 3 0.7207 

43 1 5 75 3 0.4288 

44 1 5 25 30 0.3664 

45 1 1 25 30 1.4789 

46 1 5 75 30 0.5903 

47 1 1 25 3 1.4734 

48 1 1 25 30 1.4789 
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Table 2. Choline chloride : malic acid 

Run 
HBA/ 
ChCl 

HBD/ 
Lactic 
acid 

Tempe
rature 

Time % yield 

1 5 5 75 30 0.0226 

2 5 5 25 30 0.0108 

3 1 1 25 3 0.0818 

4 1 5 75 3 0.0277 

5 5 5 75 3 0.0093 

6 5 1 25 30 0.0158 

7 5 1 25 3 0.0409 

8 5 1 25 3 0.0409 

9 5 5 75 3 0.0093 

10 1 1 25 3 0.0821 

11 1 1 25 30 0.0724 

12 1 1 75 30 0.1317 

13 5 5 25 3 0.0216 

14 1 5 25 3 0.0423 

15 1 5 75 30 0.0229 

16 5 5 25 30 0.0108 

17 1 5 25 30 0.0259 

18 5 1 25 3 0.0408 

19 1 5 25 3 0.0422 

20 5 5 25 3 0.0216 

21 5 1 75 30 0.0323 

22 1 5 25 30 0.0259 

23 5 5 75 3 0.0092 

24 1 5 75 30 0.0229 

25 1 1 75 3 0.0795 

26 1 5 75 3 0.0278 

27 1 1 75 3 0.0792 

28 5 1 75 3 0.0157 

29 1 1 25 3 0.0818 

30 1 1 25 30 0.0727 

31 1 1 75 30 0.1320 

32 1 5 75 3 0.0277 

33 5 1 75 30 0.0325 

34 5 1 75 3 0.0159 

35 5 5 75 30 0.0227 

36 1 5 25 30 0.0256 

37 5 5 25 30 0.0109 

38 5 1 25 30 0.0159 

39 1 1 75 3 0.0792 

40 1 1 75 30 0.1320 

41 1 5 25 3 0.0422 

42 5 1 75 3 0.0159 

43 5 5 25 3 0.0217 

44 1 1 25 30 0.0727 

45 1 5 75 30 0.0230 

46 5 1 75 30 0.0325 

47 5 5 75 30 0.0225 

48 5 1 25 30 0.0158 

 

 

Table 3. Optimation analysis by design expert 7 software 

choline 

chloride 

lactat 

acid 

temp

eratur

e 

time 
Desir

ability 

% 

yield 

4.71 4.76 55.24 15.63 
0.278

8 
2.28 

choline 

chloride 

malat 

acid 

temp

eratur

e 

time 
Desir

ability 

% 

yield 

1.27 1.71 35.45 12.73 
0.257

6 
0.01 

The best optimization was obtained in the 
combination of NaDES solvent choline 
chloride: lactic acid in a ratio of 4.71 mol: 4.76 
mol at a temperature of 55.24C and a time of 
15.63 minutes. Under these conditions, 
2.2789% is obtained with a desirability value 
of 0.278763107. The optimization gives a total 
volume of 217.2782 mL with 10% sample at a 
weight of 21.72782 gram. The best 
optimization was obtained in the combination 
of NaDES solvent choline chloride: malic acid 
in the ratio of 1.27 mol: 1.71 mol at a 
temperature of 35.45C and a time of 12.73 
minutes. Under these conditions, 0.0102% is 
obtained with a desirability value of 
0.040847856. The optimization gives a total 
volume of 81.32226 mL with 10% sample at a 
weight of 8.132226 gram.  

The best optimization was obtained in the 
preparation of the best NaDES solvent in the 
combination of choline chloride: lactic acid, 
but the combination of choline chloride: malic 
acid was also successful for the extraction of 
the target compound luteolin. 

 

 

Figure 4. Masslyx software analysis for NaDeS extract for 

luteolin compound (of choline chloride: lactic acid) 
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Figure 5. Masslyx software analysis for NaDeS extract for 

luteolin compound (choline chloride: malic acid) 

 

Figure 6. Luteolin 7-primeveroside 

 

Figure 7. Luteolin 7-apiosyl(1->6)glucoside 

 

Figure 8. Luteolin 7-sambubioside 

 

. 

Figure 8. 5-acetoxy-3,4-dihydroxy-6-[5-hydroxy-2-(3-

hydroxy-4-methoxy-phenyl)-4-oxo-chromen-7-yl]oxy-

tetrahydropyran-2-carboxylic acid 

In the results of the analysis of luteolin 

compounds using HPLC-MS/MS instruments, 

Luteolin derivative compounds were found. In 

the treatment with NaDES solvent choline 

chloride: lactic acid, the compounds Luteolin 

7-primeveroside (Figure 6), Luteolin 7-

apiosyl(1->6)glucoside (Figure 7) and 

Luteolin 7-sambubioside (Figure 8) were 

found. In the treatment with the solvent 

NaDES choline chloride: malic acid, the 

compound 5-acetoxy-3,4-dihydroxy-6-[5-

hydroxy-2-(3-hydroxy-4-methoxy-phenyl)-4-

oxo-chromen-7-yl]oxy-tetrahydropyran-2-

carboxylic acid was found. In this compound 

the basic structure of the luteolin compound 

was found, but with side chains that have not 

been further identified. It is possible that this 

is a new compound that has not been widely 

discussed in various fields of research. 

CONCLUSIONS 
The NaDES solvent synthesis of choline 

chloride: lactic acid by ultrasonic treatment 
has successfully obtained % luteolin 
compounds at more than 2%. The 
combination of choline chloride: malic acid 
was still successfully extracted. Detection of 
compounds using UV-Vis spectrophotometer 
instrument at a wavelength of 350 nm. 
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